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Chiral patterns arising from electrostatic growth models
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Recently, unusual and strikingly beautiful seahorselike growth patterns have been observed under conditions
of quasi-two-dimensional growth. TheSeshaped patterns strongly break two-dimensional inversion symme-
try; however, such broken symmetry occurs only at the level of overall morphology, as the clusters are formed
from achiral molecules with an achiral unit cell. Here we describe a mechanism that gives rise to chiral growth
morphologies without invoking microscopic chirality. This mechanism involves trapped electrostatic charge on
the growing cluster, and the enhancement of growth in regions of large electric field. We illustrate the
mechanism with a tree growth model, with a continuum model for the motion of the one-dimensional bound-
ary, and with microscopic Monte Carlo simulations. Our most dramatic results are found using the continuum
model, which strongly exhibits spontaneous chiral symmetry breaking, and in particular Snstempes like
those seen in the experimenS1063-651X%98)03010-4

PACS numbes): 61.43.Hv, 68.70+w, 47.54+r

[. INTRODUCTION orientation then gives a monolayer witlvo-dimensionain-
version symmetry already brokdril] at the microscopic
Growth phenomena are known for the complexity andlevel—assuming only that the molecules themselves have a
beauty of the patterns they can lead[fd. Most of this predominance of a single enantiomer. And in fact, for spiral
complexity results from different kinds of instabilities asso- crystals to appear, one needs to have a monolayer consisting
ciated with growth, such as the Mullins-Sekerka instability predominantly of a single enantiomer. The handedness of the
of growth fronts[2], or fingering instability{ 3—5]. The pres- crystals depends directly on the handedness of the dominant
ence of instabilities implies that a tiny microscopic noise canenantiomer, and no chirality appears for racemic monolayers
result in macroscopic changes of shape, and hence lead tq@. While there are several competing explanations of how
variety of shapegFor instance, the formation of snowflakes, the microscopic chirality leads to the macroscopic chirality
a growth phenomenon familiar to everyone, produces hunf12,13, it is nevertheless clear that the latter occurs only
dreds of different shapd$].) However, despite the variety because of the former. Similarly, in another chiral growth
of shapes, the vast majority of growth patterns preserve leftexample—the formation of chiral bacterial colonigd)]—
right symmetry; in other words, essentially all of the knownthe individual particles (bacteria also have a three-
growth patterns arachiral. One well-known and historic dimensional chiralitof a single “sign”), which then mani-
exception is the appearance of hemihedral faces on crystalfests itself as a 2D chirality when coupled with a 2D
yielding facetted forms which are not invariant under inver-substrate. The bacterial aggregates are observed (@)e
sion[7]. In the mid-19th century, such faces were identifiedchiral, and always with the same handednds$}. Thus, in
in molecular crystals of sodium ammonium tartrate by Paseach of these cases, it is clear that the macroscopic 2D chiral-
teur, and the broken chiral symmetry was ascribed by him taty of the aggregates results from a microscopic 3D chirality

the microscopic chirality of the constituent molecules. of the elementary building blocks.

In this work we concentrate on two-dimension@r Recently, a novel and very beautiful type of growth pat-
guasi-two-dimensionalgrowth forms. For two-dimensional tern has been reportdd4,15. A typical pattern strikingly
forms the relevant inversion operatorXs> —x or y— —vy, resembles a seahor§e the form of anS shape, with “fins”

but not both; we will call such an operation “2D inversion,” on the outer curved edgesnd so has a strongly broken 2D
and forms distinguishable from their 2D inverse “2D chi- inversion symmetry. The patterns were discovered during
ral.” (Also, since we concentrate entirely on 2D henceforthgrowth  studies of fullerene-tetracyanoquinodimethane
we will sometimes shorten these terms by omitting the lead{Cg: TCNQ) thin films. Subsequently, very similar patterns
ing “2D” qualifier.) 2D chiral growth forms are not com- were obtained using TCNQ on[\L6]. The broken symmetry
mon|[8]. In those rare cases where chiral growth patterns dis one of the most striking aspects of the patterns, as well as
appear{9,10], the inversion symmetry is already broken atone of the principal mysteries connected with them. The
the microscopic level. An example is the formation of spiralmystery arises because—in contrast to the two cases men-
crystals[9] during the compression of a phospholipid mono-tioned above—in these experiments ther@asmicroscopic
layer on a water-air interface. In this case the individualsymmetry breaking: TCNQ molecules are themselves inver-
phospholipid molecules possess a 3D chirality. Each molsion symmetric[17]. Furthermore, even though the ‘“sea-
ecule also has a preferential orientatidrydrophilic head horse” aggregates are polycrystallified], one can probably
down) with respect to the water-air interface. This consistentrule out symmetry breaking at the level of the unit cell, since
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TCNQ crystals are also achirgl7,18.
It is, however, important to note that both left- and right-
handed patterns appear in approximately equal nunjthéfs INYL
Thus, on average, the experiment does not break inversion 0
symmetry; instead the symmetry is brokepontaneously
for each island, during the growth. That is, the “seahorse”
growth experiments represent an almost unique case of spon-
taneous 2D chiral symmetry breaking during quasi-two-
dimensional growth. FIG. 1. The first two steps of a charged tree’s growth. At every
We say “almost” unique because we are aware of onlystep, the tree sglects a configuration_ with the I_owest_ elec_trostatic
one other growth phenomenon exhibiting such SpontaneO@ergy. For the _fl_rst step one of the rejected configurations is shown
symmetry breaking, namely, phyllotaxis: the pattern ofaP0ve the transition arrow.
leaves, buds, scales, etc., in growing pldi@]. As demon- ]
strated by Douady and Coud@0], this phenomenon can be tWo-armed, finnedS-shaped forms for a range of growth
understood cleanly in two dimensions; and, furthermore, th@arameters, for essentially the same physical reasons as does
resulting spiral growth patterns are clearly chiral, and theh€ tree model. We also report some preliminary studies in-
symmetry breaking is clearly spontanedd®,2d. Outside volving the same physical ideas bu_t using a microscopic
of this one example from botany, however, we know of noMonte Carlo_approach. These modelmg efforts are inspired
example of two-dimensional ~growth—experimental or by the. puzzlmg a_nd remar_kable experimental patterns; and
theoretical—in which the resulting growth patterns spontanethey yield qualitatively similar growth forms. It is also en-
ously break 2D inversion symmetry. couraging that_ fur_ther gr_owth experlments_ involving a static
In this work we construct a growth model that does yieldin-pPlane electric fieldwhich we discuss briefly below, and
such spontaneous symmetry breaking. More precisely, wi detail in another papgd.6]) have provided support for our
consider a set of models, all embodying the same ideaddeas.
These ideas involve a novel form of long-ranged branch
competition and growth, arising from electrostatic effects. Il. CHARGED TREES
We have found that such a mechanism can lead to growth
forms that spontaneously break two-dimensional inversion In this section we demonstrate, using a simple and highly
symmetry. schematic model, how long-ranged branch repulsion and
The growth models that we will consider share severafompetition may cause chiral symmetry breaking. We will
important properties. These properties are simple, and can #@rmulate a simple growth model where such branch repul-
formulated independently of the nature of the underlyingSion and competition are present by construction, and show
physical processes. The physical picture that we considdhat chiralS shapes are preferred energetically over symmet-
involves the following elementsi) branching, that is, every ric shapes.
growing branch should eventually give rise to new branches; A charged tree model is constructed as folld#ig. 1). A
(i) strong branch competition—in fact, the competition hastree starts as a single charged rod. The ends of this rod are
to be so strong, that only 2 main branches “survivgiii)  considered to be “alive.” Then each alive branch emits two
long-range branch repulsion: the two branches need t§ranches: one branch of lendiiand the other of length, .
“feel” one another and curve away from each other. Both new branches grow at a predefined angleAll three
Branching is a very common property in growth phenom-guantities—,, I;, and 6—are the same for opposite ends,
ena[1]. Branch competition is also very common. It is usu-and do not vary during the growth. Wheég1 4, there are 4
ally caused by screening—that is, by the competition bepossible combinations of growth on every step; among these,
tween growing branches for incoming particles. Butthe model chooses the tree with the lowest electrostatic en-
competition due to screening alone is not strong enough t€rgy. Then the longer of the newly added branches become
lead to two-armed shapes. For instance, the diffusion-limitediew “alive” branches, the shorter ones “die,” and the pro-
aggregatior(DLA) model leads to clusters having 4 or more Cess is repeated again. If twor morg configurations have
brancheqd21-25. Competition for incoming particles may the same energy then the selection is done randomly. The
also cause some branch repulsion. But this effect is obvifirst two steps of growth are shown in Fig. 1.
ously very short rangeda branch “feels” only its neigh- To complete this model we need to specify how we will
bors. Thus in order to achievé)—(iii), one needs to intro- compute the electrostatic energy, as the energy of a 1D
duce a long-ranged interaction into the system. As will becharged rod diverges. The most obvious way to deal with
discussed in Sec. lll A, electrostatic forces may play an imthis problem is to assign some smeilt finite) width w to
portant role in the formation of the seahorse patterns. Hencéhe branches, with this width satisfying<lg,l,. This al-
in our models, the long-range interaction between branchedows us to work with 2D, rather than 1D, charge density. To
is also of electrostatic origin. compute the electrostatic energy of the tree, we further break
We will start with a very simple deterministic “tree” the branches into smallélinean pieces. Theth piece has
growth model that has propertigg—(iii) by construction, the lengthl;, and the linear charge density, which is in an
and show that this model prefers chiral rather than symmetriobvious way related to 2D charge density=\;/w.
shapes. We will then consider a more realistic quasiequilib- We will consider two possible charge distributioi$) a
rium continuum model, in which propertig$)—(iii) arise  conducting charge distributiol;=const, whereU; is the
naturally due to electrostatic interactions. This model yieldspotential at the center of thigh piece;(2) a uniform charge
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repulsive electrostatic interaction, we effectively made the
tree keep its branches as far away from each other as pos-
sible. This observation alone accounts for the fact that the
tree “chose” theS shape on the first split. However, during
subsequent splits the result is determined by the interaction
betweenall branches, and the outcome depends crucially on
how the charge is distributed over the tree: the more charge
is concentrated on the small “dead” branches, the stronger
the symmetry breaking.e., the higher is the achievable cur-
vature of the main armis We can illustrate this point by
considering the case of a uniform charge distributign
=const. In this case the potential energy of a tree is given by

1 \?
Uu:—z U”}\])\,h:_z U”I, (25)
2|vl 2 1]

We have grown a number of trees using the above rules, but
with the assumption of a uniform charge distribution. The

FIG. 2. The growth of a conducting tree=0.7, 1,=0.5 (ar-  resulting trees have a much more weakly broken symmetry,
bitrary length units 6=12°. In this case, growth according to an Which comes primarily from the symmetry breaking at the
energy-minimization rule leads to @& shape. first branching; and they are n8tshaped.

This result is consistent with the idea that a higher charge

distribution o= const. In both cases the total charge of thedensity on the external “dead” branchéshich results, for
system will be normalized by the requirement that the averinstance, from the conducting charge distribufienhances

age linear charge density be equal to unity, that is, the overall chirality of the cluster. We will return to the
question of how the charge redistribution influences which

branches survive or die in the next section.

)‘:Z Mh/L=1, 2.0 We also note that one can construct a nondeterministic
charged tree growth model, where the growth rates them-
whereL =231, is the total length of the structure. selves are determined by the electrostatic interaction between
To find the charge densities for each piece we construct Aranches. This nondeterministic growth model also leads to a
set of linear algebraic equations spontaneous chiral symmetry breakirs].
N—-1
Z Ui =1, 2.2 ll. THE CONTINUUM MODEL
1=0 A. Construction of the model
wherei=0, ... N—1, andUj; is the electrostatic potential, In this section we will consider a more realistic growth

which would be induced at the center of tik piece by the  model, in which strong branch competition and survival of
jth piece if the latter had anit charge density. Clearly the only two main arms occur naturalfor some range of pa-
solution{\;} of Eq. (2.2) meets the requiremetd;=const rameters That is, for the model we now describe, properties
(the constant was set t9;lthis solution can then be easily (ii)—(iii) (strong branch competition and repulsi@atise as a

rescaled to meet the normalization conditi@nl). result of thedynamicsof growth. In common with the tree
Using elementary electrostatics, one can show that thenodels described above, a crucial ingredient is the presence
constantdJ;; are given by of a long-ranged electrostatic interaction.
First we will consider in more detail what actually hap-
Uji=2 In(5.44w/l;) (2.3 pensin the “seahorse” experimerjts4,15. In these experi-
o ments layers of TCNQ are deposited using the ionized clus-
and fori #j ter beam(ICB) deposition[27,28 method. With this method
3 the TCNQ molecules are ionized and then accelerated to-
=N (1j/2=x)"+yi +(1j/2— X)) (2.4 wards the substrate, where they arrive with high kinetic en-
ij ! > y . . L -
V(i2+ ) +y7 = (1/2+ %) ergy (and thus high mobilityand therefore can diffuse along

the substrate and form growing clusters. A small fraction
wherel; is the length ofjth piece,x;,y; are the coordinates of the diffusing particles(estimated[16] to be typically
of the center of theth piece(the origin is assumed to be at ~10%) are chargethll of the same sign Thus the growing
the center of theth piece, and the axis directed along the islands will also carry sométime-dependentcharge. The
jth piece. magnitude and time dependence of this charge are not
The growth of such trees was studied numerically, and alknown; they depend on many complicating factors, including
trees grown according to these rules demonstrate somtee repulsion of the charged, diffusing particles by the charge
chirality. One of the typicaB-like shapes is shown in Fig. 2. on the island, leakage to the substrate, both from the diffus-
Why does the tree prefer to break the left-right symmetrydng charged walkers and from the charged aggregate, and the
To answer this question, we note that, by introducing thé‘rain” of charged particles directly on the growing islands.
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We will treat this time-dependent charg@(t) in an ex- energy of the walkers in an ICB experiment; and second, it
tremely simple way below; our motivation is to explore the makes the problem tractable, giving a simple form for
kinds of effects that electrostatic charge may have on growtiN(x,y) that enables us to concentrate on the motion of the
processes. boundary. Given this assumption, then, the concentration of
The field of the island, in contrast with the field of walk- walkers is given by a quasiequilibrium Boltzmann distribu-
ers, is not random, and therefore will play the dominant roletion: N(x,y,t) =N@exd —U(x,y,t)/kT] whereU(x,y) is the
in how the particlegwalkers diffuse. Hence in our work we potential energy of a walker at the point,§), N(© is the
neglect the random field of the walkers. We assume thagoncentration far away from the cluster, akdis Boltz-
neutral walkers have a nonzero polarizability; hence the difmann’s constant.
fusive motion of both charged and neutral walkers is affected In our case there are two different kinds of particles
by the electrostatic field of the aggregates. To consider thgresent in the system: charged and neutral walkers, each kind
simplest case, we will neglect any possible cluster-clustehaving a different concentration and a different potential en-
interactions and consider only the growth of an isolated isergy function. The overall growth rate is given by
land.
An obvious approach to this problem would be a Monte dh(x,y,t)/dt=dh,/dt+dh./dt (3.9
Carlo (MC) simulation. However, a simple estimate of the ]
number of particles in seahorse clusters in the experiment¥here the subscript denotes neutral walkers, and the sub-
gives 16— 107 particles. A direct microscopic Monte Carlo SCript ¢ charged walkers. The walker concentrations are
simulation for a problem of this size is very hard, if not 9iven by
impossible. We have performed some limited MC studies
(involving much smaller particle numbers, i.&\N~10°),
which we will describe briefly in Sec. IV. Here we will con- . .
sider an alternative approach, in which, instead of tracing th<¥"Ith B.:n or ¢ and (as Q|scussed aboye\'2f°0)<N§‘O)' The
motion of individual particles, we will compute local growth Potential energyU(x,y) is equal to —xE®/2 for neutral
rates for the cluster boundary, which we treat as a continuougalkers (of polarizability x) in a field E=|E(x,y,t)|, and
1D curve. We will obtain equations for the motion of this 1D V(X,y,t)e for charged walkers.
curve, and study the kinds of growth that result. Now we assume that the cluster is conducting. As with
First, let us consider a growing island surrounded by dif-the quasiequilibrium assumption, our reasons are both com-
fusing walkers. If a walker hits the island, then with someputational and physical: the conducting cluster is rather
probability ps (“sticking” probability) it (the walkej be-  straightforward to treat numericalland even analytically in

comes a part of the island. Then the local growth rate is  SOme special casgsut also, from our charged-tree studies,
we expect that a conducting cluster will enhance the type of

dh(x,y) - ) d?Npi(X,Y) branch competition that we wish to study here. For a con-
“at " Xd)%wpm ducting clusterlJ. (and hencelh./dt) are each independent
(3.1) of position on the island. The applicability of this assumption
to the seahorse experiments will be discussed below.

where dh(x,y) is the displacement of the given boundary Th_e model we have co_nstructed thus far requires the com-
point (X,y) during the timedt, ﬁ(x,y) is the unit vector pgtaﬂon of the e[ectnc field due_ to .th(_a charge on a tW.O'

normal to the boundaryg,, is a typical intermolecular dis- dimensional growing clus_ter_, Wh.'Ch IS N _general of an ir-

tance in the growing clustéthus 5% is the area occupied by regular shape. This electric field is determmedﬁ by the charge
a single molecule and d2Nj;.(x,y)/(dt dI) is the number distribution o(x,y,t) on the island. HoweverE(x,y) di-

of hits per unit boundary length per unit time. We then takeV®'9€S near the edge of any 2D charge distribution; hence,
instead of using the field at the edge, we will use the field at

d2Npig(X,Y) a small(moleculaj distance from the edge. That is, instead
qrar - amsNx.yur, B2 of E(x,y,t)=E(F,t) we will use E[F +5-n(x,y),t], where
d is the “sticking distance”—the distance at which a diffus-
where N(x,y) is the walker concentration near the pointing particle sticks to the cluster; we will assurie 5,,. The
(x,y) on the boundaryy is an average thermal velocity of electric field is determined by the shape of the island, to
the walkers, andry is a numerical factor of order of unity. within an overall scale factor given b9, the net charge on
Thus, we can rewrite the equation for local growth rates asthe island.
. We can now introduce a simpler charge nonconserving
dh(x,y) . model. The majority of particles are neutral; furthermore, the
dt NX.Y)GrpsN(x.y), (3.3 charged walkers tend to be repelled from the charged cluster,
while the neutral, polarizable walkers are drawn to it. Hence
whereGr= a0 185 is a constant that depends only on theone can expect that most of the growth will result from the
temperature. aggregation of neutral particles. Therefore, we neglect the
Here we will assume that the growth is slow enough to beerm due to the charged particles in E§.4). The charge
considered as a quasiequilibrium procéssich is the case effects are taken into account simply by rescal@@). As
whenpg<1). Our motivations for this assumption are two- discussed above, the likely behavior Q{t) is unknown,
fold: first, it is physically motivated, in that the sticking and dependent upon many competing effects. Here we will
probability may indeed by very small, due to the high kineticuse the simplest possible rescaling rule: we will assume that

Ng(x,y.t) =NPexd — U 4(x,y,t)/KT] (3.5

G(x,y,t)=

G(x,y,t)=
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Q(t)=A(t) o, whereA(t) the overall area of the cluster and Ry~0.2 xm. Although this estimate is very rough, it is en-

the average charge densityis assumed to be constant. ~ couraging to see thak, is smaller(by roughly an order of
We now have a sufficient set of ingredients for a Comp|eténagnltudethan the size of seahorses observed in the experi-

growth model. That is, a given initial shape determines thé“e”ts[“vla; i - _

charge distribution and hence the electric field. The latter Thus we find an instability of a compact, circular cluster

then allows a growth increment in timdt to be computed, 0 an elliptical form, when the compact cluster exceeds a

yielding a new shape. With the new shape one then Computé‘sgltlcal size. We have studied the gr_ovvth of ellipses numeri-

a new charge distribution and field, and so on. cally, and verified that the elongation decays R Ry;

while for R>R, the elongation persists and grows well be-

yond the linearized form, and in fact is amplifiddnd
“pinched”) by the resulting growth, to give two arms. We
Now we will show that, with the model as stated, a grow-have also numerically tested instabilities to four arms. Here
ing island will eventually transform from a compact to an we find, for the parameters that we have explored, that the
elongated shape. Consider an island of elliptical shape, witfyo-arm instability is dominant over four-arm instabilities.
principal axesa, b. If we compute the new boundary, using |t is clear that, for most cases of interest, neither the
Eq. (3.4), the new shape will not be exactly elliptical; how- charge density nor the electric field can be computed analyti-
ever, the ellipse’s field may still be used as an approximacally. Hence we need to implement our growth model nu-
tion. It is then obvious that this new ellipse will have greatermerica”y_ This can be done as follows. The current boundary

B. Analysis and simulation

eccentricity than the original one if

a+G(a,0dt a

b+ G(0b)dt b’ (3.6

which (considering only growth from neutral walkégrss
equivalent to

G(a,0)
G(0,0)

=exp{§[52(0)—52(w/2)]/kT >alb. (3.7

The electrostatic fieldE(¢) at distances from the point
(acos¢,bsing) is given by

Q? P
E2(¢)= 25at)(bzcos’-¢+azsmqu) 12

(3.9

After introducing the average charge dens_frty Q/A, where
A= mrab is the total area of the cluster, E@.7) becomes

xolm?

ex%m(a—b) (39)

>a
B.

of the cluster is represented as a set of vertifes.v
=0, ... Np,—1}, connected by line segments. For each ver-
tex we compute the potential energy of a walker near this

pointU(r,); then a unit normal vectar, , and the displace-

ment vectorA,=n, G(r,)A, are computedwhere A, is a
time-scaling constajptAfter all displacements are computed,
all vertices are moved to their new positions. The only re-
maining problem is to compute the field distribution near the
boundary.

One can try to deal with this problem by solving straight-
forwardly Laplace’s equation for the electrostatic potential.
However, despite the fact that our problem is two dimen-
sional, Laplace’'s equation for the electrostatic potential is
still three dimensional. Hence, to find the local electrostatic
field, one would need to solve this 3D problem for the full
space. To take advantage of the lower dimension of the prob-
lem, we will use a surface charge metfj@9-32, which we
will outline below.

Given the clusteC, we first compute the 2D charge den-
sity o(x,y), and then find the electrostatic field. To find
o(x,y), we introduce a grid{D;,i=1,... ,Ng;lii eC},
forming a square lattice inside the cluster. Each square of

It is obvious from this equation that, if at some time dur- this lattice is assigned a charge density(we will refer to
ing the growth the relationship E¢43.9) becomes valid, it these squares as elemgnfdow we replace the continuous
will remain valid afterwards. Initially, the shape is compactequation for the electrostatic potenti{x,y) = const for all
(circulan, i.e.,a=b=R. However, due to the stochastic as- (X,y) eC by the discrete equatioh/([_ji):const, which

pect of the growth there are always small variations in theyives rise to the following set of linear algebraic equations:
radius. One can expect that the magnitude of these variations

is at least~ 6, that is,|a—b|~ 8. The transition from the Ng—1
jgo Uija-j:]-!

compact to elongated shape occurs when the compact shape (3.12
becomes unstable with respect to such variations. This hap-

ens wherR reaches some critical vall®,, determined b . .
P Ry y where i=0, ... Ny—1, and the scaling constant on the

yolm? right-hand sidghere set to Lcan be chosen arbitrarithat
1+ 5/R0=6X%W) )

(3.10 is, after the system is solved, we can rescale allatf)e U;;
is the electrostatic potential which would be induced at the
or point I5i by the square element if the latter had aunit
charge density. Therefore, one can approximageas fol-
Ry~ 26k T/ yo2m?. 3.1y lows:

Now, estimatingo~ ael 82, x~2x10"%* cm®, §,~6

for i#j,
~10"" cm, a=10%, andT~300 K, we get the estimate ij

(3.13
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whereA, is the area of thgth element, and;; :|5j_ Dil. course, this simplification results in a less realistic field, but
For most purposes the accuracy of this point-charge equatiofie believe that the main physical features of the system—the
is sufficient, but one can also use a more accurate expressiéharge redistribution within the cluster, and the resulting

for Uj;; that takes into account a quadrupole correction branch repulsion and competition—are preserved.
We add one further ingredient to our model, namely, the

A, A property(i): branching. The branching instability in growing
Ujj ZE 1+ oa2 314 formsis well known[33-35; it arises in diffusive problems
! as a result of competition between surfagecoming
The expression for the self-induced potential is diffusion—which tends to favor new branches—and edge
diffusion (along the boundady—which tends to keep the
U; =3.525d, (3.15 cluster smooth. Such competition may be expressed in terms
of a length scald_; this is essentially the cluster size, or
whered is the element sizé.e., the grid step branch length, at which edge diffusion can no longer main-

Equation(3.12 can be solved numerically and then the tain the smoothness of the growing form, and new branches
electric field can be computed. However, at this point weform. Our continuum model does not explicitly represent the
face a difficulty. As we have seen earlier, the field intensityunderlying diffusive processes. Hence we include a branch-
E diverges near the edge of the cluster. In addition, théng instability in a simple way as follows. When a branch
charge density itself diverges near the cluster's boundaryeaches a sizé., (or after a certain number of growth
Thus we are trying to find small variations in a diverging steps—which is approximately the same criterion, for the
quantity, which itself depends on another diverging quantity fastest-growing branchgsve force it to split exactly at the
We can alleviate this problem by introducing line chargespoint of the fastest growtfas determined by the charge dis-
along the boundary. That is, in addition to charged squargribution) into 2 branches. This branch splitting is just the
elements, we will assume that the boundary segments atgmplest implementation of the fingering/tip splitting insta-
also charged. This modification can be easily incorporatedility, which is present in many growth phenomdi®. This
into Eq. (3.12; one needs only to distinguish between theinstability arises near the tips of fast advancing branches; and
self-potentialU;; for square elements, which is given by Eq. the faster the growth, the more likely the split to oc€8i.
(3.19, and the self-potentidl;; for line elements at the clus- For most diffusive problems one may expect branches to

ter's boundary, given by form also away from the fastest-growing tips. We have ex-
plored this possibility numerically, and find in fact that, if we
Uji =2w In(5.44w/1;), (3.18  introduce such branches away from the tips, they do not

. R ) , grow—due to the severe competition present in our model.
wherew is the segment's widthi.e., border widthandl; is  fence, in the following, we only describe cases where noise
the length of the segment. The accuracy can be further My introduced near the tips of the fastest-growing branches.
proved by using the exact field of a uniformly charged rod  opyigusly, the model described thus far lacks any source
rather than the point charge field given by £8.13. of noise (apart from some tiny numerical noise, which is

As an even further simplification of the problem, we may g\yays inevitably presentThis meangamong other things
use the lineaboundary elementsonly. The basis for ne-  yh4¢ a1 symmetries present in the initial shape of the cluster
glecting the interior elementsvhich are exactly zero in 3D \yjj| he preserved during the growth. To explore the possibil-

is the fact that the charge density in 2D is the largest near thﬁy of chiral symmetry breaking, then, we need to add some
boundary, so that charges located close to the boundary gi\’(@ery smal) noise into the system—noise that breaks 2D
the main contribution to the electric field. This simplification ;. ersion symmetry.

not only reduces the number of elements to consiaed Based on the considerations above, our typical starting
thus speeds the computatjobut also makes it easy to com- .o qition for numerical studies is an ellipse, with some very
pute the electric field intensity: to compute a field at distancgm )| defects added to represent noise. As mentioned above,

6 from element, one can just use the cases of interest, in which the defects induce further
- - branching, occur when the noise is added near the tips—i.e.,
Ei=2n;ow/é. 3.17 near the long axis of the ellipse. As one test of the sensitivity

o ..., . of the model tachiral noise, we have used as a starting form
The Bolt_zmann factor forza neutral Pa”,'g'e in this field is an ellipse with two tiny defects, which are small dents placed
then given by expxE/(kT)]=exp(yoi), where y  pearut not af the tips of the ellipse, along the long axis.
=4yw?c?/(5%kT) is the dimensionless interaction constant, The right dent is placed slightly above thaxis, and the left
and o{ is the dimensionless charge density, determined bylent slightly below. Thus these defects break 2D inversion
Eqg. (3.12 and by the rescaling conditiod(o{;)/=l;=1. symmetry. Figure 3 shows the results after several genera-
We find this simplification to be very important, because,tions of branching. We note that the original defects are so
when the charge density is modeled by a square(gudn if  tiny that they are almost invisible in Fig. 3; however, the
the grid is very fing the nonuniformity in the charge density original tiny chirality has been increased hugely by the re-
(arising from the finite grid stepcauses noticeabl@rtifac-  sulting growth. We also see that Fig. 3 bears an obvious
tual) fluctuations in electric field, which are theamplified resemblance to the experimentally observed “seahorses.” In
by the growth of the island. In contragas will be seen fact, it has essentially the same geometric properties as a
below), if we locate all the charge on the boundary elementgypical experimental seahorsél) only two main armsj2)
then the discretization does not lead to such artifacts. Othese main arms are curve(®) the curvature is correlated
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(a) b)

FIG. 3. Sixty time steps in the growth of a charged island. The
starting condition is an ellipse with two tiny defects, each placed
just counterclockwise of the ellipse’s symmetry axis. The tiny sym-

metry breaking present in these defects is dramatically enhanced by ) ) )
the subsequent growth. FIG. 5. Early stages in the growth of the right half of Fig. 3,

viewed in detail(a),(b) The broken symmetry in the originéiny)
defect leads to dominance of the lower bran@). The growing

. . branch 1 splits again(d) The nearby “dead” branch 2 inhibits
the outer edge of each main arm is covered by “firisthall branch 3, so that again the lower branch dominates. In this way the

dead_ b_ranche)s . “memory” of the handednessright or left) of the original small
It is important to test that such dramatic effects are aCllgetect is maintained and amplified by the subsequent growth.

ally implied by the dynamics of the model, rather than arti-
factual(i.e., resulting from some defects in the implementa- . ) ) o
tion of the model. In fact, it is possible to “discover” a trostatic repulsion will cause the charges to redistribute, so
chiral symmetry breaking in the present model arising simthat the points of fastest growth will no longer coincide with
ply from the fact that a certain ordering of points along thetips of the new branches. Instead, the fastest growth will
boundary(clockwise or counterclockwigds present in the —occur at points of maximal local charge densgitgnce maxi-
numerical algorithm. Such an ordering can break the leftmal |I§|2), which are farther away from each other than tips
right symmetry of the numerical growth results unless suffi-of the branches. This will force the branches to curve away
cient care is exercised. We have discovered and removefdom one another. If the split is originally symmetric, then
such artifacts in our own algorithm. A good test is then athe result of the competition between the new branches will
numerical simulation in which the starting shape is an ellipsébe determined by the influence of all the otk&ready dead
with two defects thatlo not break the symmetryi.e., the  branches. In particular, the main bodyeing closer to the
defects are located precisely at the tips of the ellip¥be lower branch favors the upper new branéhranch 3, while
result of such a test is presented in Fig. 4: the original symthe previous branckbranch 2 favors the lower new branch
metry is retained during subsequent growth. Hence we aréranch 4. Branch 2 is smaller than the main body, but the
confident that our numerical studies are free of anyfac-  main body is further away. Hence, if the parameter values
tual chiral symmetry breaking. are right (in particular, if the distance between splitting
Now let us consider in more detail how the observed curpoints is small enough, and dead branches are large epough
vature arises. Figure 5 gives a more detailed picture of théhen the nearby dead branch has a dominant influence, and so
growth and branching processes at one end of the islandranch 4 will win the competition. Then, due to the expo-
After the first split[Fig. 5@)], the new branches compete for nential difference in the growth rate, branch 2 will stop
further growth(as determined by the electric fi¢ldand one  growing. If this sequence is then repeated, the main arm
of the new branches “dies’(i.e., practically stops growing curves further to the right at each branching.
[Fig. 5(b)]). The winning branch eventually reaches the criti- A similar process happens on the opposite end of the clus-
cal length and then splits agafffig. 5(c)]. Let us consider ter. Hence we see how the present model leads to two main
what happens when this branch splits in some detail. Firstarms, each of which may be rather strongly curved. 3\n
we note that the new branches “feel” one another. The elecshape(rather than & or a ‘3’ shape results if the direction
of curvature is the same for both main arms; that is, the two
arms must show aeorrelationin curvature. This implies that
one end of the growing body is significantly affected by the
form of the distant end. We believe that this point is impor-
tant: curvature itself, such as shown in Fig. 5, may be as-
cribed to relativelylocal effects. However, the correlation
giving rise to consisten§ shapes appears tequire some
form of long-ranged communication between the parts of the
FIG. 4. Growth of an ellipse with two tingymmetricalljocated ~ growing island. It is interesting to note here that, in a small
defects. Such a shape preserves its symmetry during the growtRlinority of the experimentally observed islands, there are
Hence the symmetry breaking seen in the other figures is not arttwo arms whose curvature is in opposing directions—giving
factual. a 3 form rather than a8 [16].

(that is, the two branches curve in opposite directipf¥)
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12

FIG. 6. Growth from an initial shape in which one defémt the
right) is off the symmetry axis, but the othéwn the lef} is on the
symmetry axis. The broken symmetry on the right-hand side still
has a large effect on the growth of the left-hand side—in fact, it
causes the samelockwise branch to dominate there, even though 16
the left-side defect is symmetrically placed.

'
S
o

This correlation is not tested by our Fig. 3, since it is built
into the starting condition. We demonstrate that such a cor-
relation does occur in the present model in Fig. 6. Here the  ,,
starting condition is an ellipse with orfgght) defect off axis
(to break the symmetjybut the other one precisely on axis.
We see that the growth dynamics not only causes the right
arm of the cluster to curve downwards, but also determines
the outcome of the competition at the other end of the island. £ 7. Growth forms for different values of the branching
It is clear from the figure that the growth at this end is ini- jength L, (increasing downwardisand the interaction constant
tially symmetric; yet subsequently, the upper arm dominatesjncreasing to the right There is a region of the figuteoughly, the
purely due to influence from the other end of the cluster. Wecentey in which growth givesS forms resembling those seen ex-
see that “clockwise” growth at one end has sufficient influ- perimentally. However, if the electrostatic effects are too wielk
ence to force clockwise growth at the other. Thus we findsid® or branching is too infrequertbottom then other forms re-
that dominance and curvatusee correlated between the two Sult, displaying little or no chiral symmetry breaking.
main arms, leading to strong chirality of the overall cluster.

o8 &

4
Ly v— 12 16 20

‘ I shape is not amecessaryputcome of the growth model, yet
local bias, after some growth “feel” one another and so aréneither does it require fine tuning of the model parameters.

repelled. We believe, however, that this starting condition iSStarting with the same initial form as that leading to Fig. 3,
less realistic than those in Figs. 3 and 6, because the noisge have performed simulations for different values of the
we introduce into our continuum model does not represenfiyo model parameterd:, (the branching length and the
truly microscopic noise, but rather that noise that may beslectrostatic interaction constapt The results are presented
expected to grow beyond the microscopic scale. This is bein Fig. 7.
cause the continuum model itself is not a truly microscopic A number of conclusions may be drawn from Fig. 7. We
model. Below(Sec. IV) we will give evidence from our mi- see clearly thatbranching is important for obtainingS
croscopic Monte Carlo studies that this continuum modekhapes: in the bottom row of the figure, branching is essen-
does indeed capture important features of the large-scale beally absent, and the resulting forms amplify the broken
havior of a microscopic model with noise—in particular, the symmetry of the initial condition only rather weakly. We
two-arm instability, and the repulsion between these twaalso see that charge effects are equally important. They are
arms. weak in the left-hand column of Fig. 7; and the resulting
It is entirely plausible that a “nonlocal” effect such as the forms are uninteresting, regardless of the branching length.
correlation of curvature shown in Fig. 6 is more fragile thanFinally, we note that, while both of these effects are
the more local effects shown in Fig. 5. This is true experi-important—in that they must be present in order that “inter-
mentally [16]: as noted above, while the large majority of esting” growth forms result—fine tuning of the two model
individual experimental clusters form & shape, some do parameters isiot needed: we see clear two-arm8dshapes
not. Yet it is precisely this kind of long-distance correlation over a central region of the parameter space.
that gives rise to the broken inversion symmetry: in the ab- In short, Fig. 7—along with the previous figures—
sence of such correlation, half of the two-armed islandslemonstrates rather clearly that growth dominated by elec-
would hawe a 3 orC shape—and these shapes are not 2Drostatic effects+ branchingcan give rise to spontaneou®
chiral. shapes that strongly break 2D inversion symmetry, and that
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these forms areot simply modeling artifacts arising either
from fine tuning or from being built into the model by hand.

We thus assert that our model possesses a gechira
growth instability; that is, it can drastically amplify any tiny
perturbation that breaks the left-right symmetry. Such “dras-
tic amplification” is of course what is meant by the term
“spontaneous symmetry breaking’—which is also an appro-
priate description. Hence the kind of pattern-forming behav-
ior studied here falls into the same, quite rare class of behav-
ior as that seen in phyllotax[49,20.

IV. MONTE CARLO STUDIES

We have performed a number of MC studies of aggrega-
tion under conditions where the aggregate is charged, and
there are both charged and neutral walkers. The most obvi- FIG. 8. A 2300-particle cluster grown using a Monte Carlo al-
ous obstacle to overcome is the size of the clusters; as megerithm on a triangular lattice. The growth rule is described in the
tioned earlier, there are 46 107 particles in a typical ex- text; growth parameters age=1.0 andE, /kT=2.5. Although this
perimental cluster. Thus, in order to perform a successfutluster looks promising, we have not obtained such results consis-
MC simulation of these experiments, one must find a regimdently. It is probably necessary to use larger particle numbers to
where the desired behavi¢iormation of S-like clusterg is ~ obtain such forms consistently.
achieved with smaller numbers of particles.

We have explored a number of MC models, involving edges of the curveig. 8). However—recognizing now that
various combinations among the following choices: chargghe particle numbeN represents in a sense a third dimension
conserving or nofas abovg following each walker indi- g pe exploredwith our present range =< 2000)—we did
vidually, or making(again a quasiequilibrium assumption not find a volume of this three-dimensional space in which
for the spatial distribution of walkers; and treating the clustetihe curvature appeared consistently. It is, however, interest-
as insulating or conducting. Our most encouraging resultﬁqg to note that, where curvature did appear, there was an
were obtained using the latter choice in each of the abOVﬁpparent tendency for the curvature of the two arms to be
three cases: that is, modeling only the neutral walkersgqrrelated.
treated as a quasiequilibrium gas bonding to a conducting As mentioned above, in tests of our continuum model we
Cluster. The resulting model is very like our continuumfoyng that there was a four-arm instability, which, however,
model in many ways—uwith the important difference that\yas weaker than the two-arm instability over a range of
branching is now a part of the model dynamics, rather thamyrowth parameters. One can also see this from Fig. 7: for
being enforced as a premise of the model. _ some parameters, one finds four dominant arms, and for oth-

With the above assumptions, the growth rule is as fol-grs two. Here we see the same competition in Fig. 8: two
lows. We perform the growth simulation with the underlying arms have grown to dominance, yet there are two others that
2D space discretized as a triangular lattice. Given a shape ¢faye not entirely stopped growing. We have also plotted out
the cluster(i.e., a set of occupied sites—our starting clusterg nyo-dimensional “map” of MC growth patterns, depend-
is typically a single sitg we first find all nonoccupied lattice ing on the electrostatic parameterand the smoothness pa-
sites adjacent to the cluster. Then, for all sites SimU|ta’rameterEb/kT. We find that this “map” is qualitatively like
neously, we compute the non-normalized probability of &nat shown in Fig. 7: compact shapes for smand large
new particle joining the cluster at this site according to E, /KT (roughly equivalent to smaly and largeL, in the

continuum mode| and two, relatively straight, arms for
P=A ex{ (xE3/2+ KEp)/KT], (4.)  large y and smallE,/kT. There are also some significant
differences between the two maps. One differendagdgsin
where subscrips numbers sites along the cluster boundary,that we find no regiorfin (x,E,) space, atN~2000] of
E; is the electric field strength at sise A is a normalization consistent curvature of the two arms, giviBgshapes. An-
constant(effectively, the time scaling constantK is the  other is some tendency for three or six arms to appear; this is
number of sites neighboring sigethat are already occupied, almost certainly an artifact of the underlying triangular lat-
and E, is the bond energy. Thus, again we have a two-ice.
parameter model. The strength of electrostatic effects is set Clearly these results support some important aspects of
by the dimensionlesg. The competition of surface and edge the picture gained from our other, less microscopic models,
diffusion is contained in the bond enerfjy: LargeE, tends even as they fail to give “seahorse” forms. The two-arm
to keep the cluster smooth, while smél|, allows small ir- instability, with the tendency for the two arms to kel80°
regularities to grow. apart, is clear; also the microscopic paramejeendE, /kT

Using this MC model, we were able to reproduce some ofjive qualitatively the same growth behavior asgandL,
the features of the seahorse clusters. Specifically, we foundia the continuum model. However, we have not found con-
clear two-arm instability for a significant area of the two- sistentS shapes from the MC models that we have explored.
dimensional parameter space. We also found some tendentye believe that MC simulations with largsr are needed to
for the arms to curve, with small dead branches on the outetest these ideas and results further. It is clear that the kind of




6024 SANDLER, CANRIGHT, GAO, PANG, XUE, AND ZHANG PRE 58

ing defect$ and the external fieldwhich tends to align the
growth along the field directionThe result of this competi-
tion is (roughly) a straight branch, growing at an angle to the
field. These results show a good qualitative agreement with
the experiments(a) the curvature of the main arms is sup-
pressed(b) only one arm grows; an(t) there is some weak
tendency for growth to follow the direction of external field,
FIG. 9. Growth in the presence of an external electrostatic field@nd at the same time, some reason to expect the growth to
oriented horizontally to the right. Starting conditions and growthdeviate from the orientation of the external field.
rule are otherwise as in Fig. 3.

repeated branching and death shown in Fig. 5 requires a VI. CONCLUSIONS

minimal number of microscopic particles in an aggregate ) _ )
before it can appear. Each dead branch that plays an impor- Despite the obvious resemblance between the experimen-
tant role in driving the curvature must be formed of sometal results and our simulations, many questions need to be
minimum number of particles; and there must be severagnswered before one can claim that our model is directly
generations of dead branches—and of course concomitafglated to the experiment. First, TCNQ crystals are not con-
growth of the entire aggregate—for the curvature to becom@ucting[36,37. However they are believed to have a large
significant. We believe that our current results are below thatabout 8) dielectric constari88]. Obviously, the polariza-
threshold inN (assuming that it exists Our current MC tion charge distribution on the surface of a dielectric will be
results also show too much dominance from both noise andifferent from the charge distribution on the surface of a
the underlying lattice. It is clear from Fig. 8 that artifacts conductor; but the larger the dielectric constant, the smaller
from the underlying lattice are not negligible at the smallthis difference. Second, our model relies crucially on the
scale of the figure. Also, microscopic noise is still large atassumption of slow growtlithis assumption leads to expo-
this scale, compared to the other physical effects influencingiential differences in growth ratedt is not clear how close

the growth. Both of these effects will become less importanthis assumption is to what really happens in the experiments.
at largerN. Third, there are very large uncertainties regarding the likely

behavior ofQ(t), the charge on an island as a function of
time. Finally, there is one feature in the experimental pat-
terns that can almost certainly not be obtained from our elec-
trostatic mechanism alone, namely, in the experimental sea-

The results that we have presented above represent dnorses the curvature is strong enough and prolonged enough
unusual form of symmetry breaking in the modeling of that the main arms commonly bend back to touch the central
growth phenomena. While these studies were inspired by thkody of the island. We speculate that the addition of crystal-
same unusual symmetry breaking seen in the ICB experiine anisotropy effects at grain boundaries can yield this kind
ments[14—-14, it is by no means certain that the mechanismsof behavior.
explored here are in fact responsible for the observed growth One might argue that some other kind of long-range
patterns. Our ideas have, however, motivated further growtforce—for example, that coming from elastic effects—might
experiments, to be reported in detail in a separate publicatioproduce arS shape. Of course we cannot rule out this pos-
[16]. Here we will briefly describe the idea of the experi- sibility. However, the physical effects expected from elastic
ments, and the corresponding simulation studies that we haverces are rather different from those explored here, arising
done, using our continuum model. from electrostatic effects. Elastic stresses are not concen-

ICB growth experiments have been performed as in Refdrated at growing tips, but rather at “valleys™ of the solid’s
[14] and[15], with the single change that there is imposed anboundary. Also, in our picture the electrostatic effects are
external electrostatic field in the plane of the films. The mo-important beyond the boundary of the aggregate. Elastic
tivation is to test whether electrostatic effects are indeed imforces can also extend through the substrate, beyond the
portant for the growth forms; and the resuli6] say that boundary of a growing island, during epitaxial growth on a
they are. Qualitatively, the in-plane field tends to give threecrystalline substratg39]; however, such effects seem likely
effects:(a) the curvature of the main arms is reduced by theto be much smaller for an amorphous substrate such as that
field, and even eliminated in a sufficiently strong fie(t) used in the ICB deposition experiments. Finally, it is not
growth appears to be predominantly at one of the two mairclear to us how elastic forces could give the broken symme-
arms;(c) there is aweaktendency(which cannot be distin- try seen experimentally, nor the strong sensitivity of the
guished with certainty from zeydor the straightened clus- growth patterns to an external electric figlb]. We do note,
ters to grow in alignment with the external field. however, that someombinationof elastic and electrostatic

It is straightforward to include an external electric field in effects may be needed to give rise to the high degree of
our continuum simulations, by adding another term to the'bending back” of the main armsénoted aboveseen in the
equations(3.12 for the charge densities. A typical result experimental seahorses.
from such a simulation is presented in Fig. 9. The starting We comment upon our modeling results. It remains to be
condition is the same as for Fig. 3. We see that the clustelemonstrated that all of the features reported [igve arms,
has lost most of its curvature. Also there is some competitiobranching, consistent correlated “deaths” of branches lead-
between the tendency to cur@ghich is favored by the start- ing to curvature, and correlation between the curvatures of

V. GROWTH IN AN EXTERNAL
ELECTROSTATIC FIELD
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the two main armscan be seen to occur together in a singleusing the continuum model; simulated growth often led to
model, with none of them being imposed on the model byclusters that possess the same geometrical properties as the
construction. Our continuum model shows all of these feaexperimentally observed “seahorsefl’4,15. The results of
tures but the branching itsefivhich is uncontroversigland  our simulations in the presence of an external electric field
our MC studies have shown hintsr more of all of these  are also in good qualitative agreement with the experimental
features. We believe that all of our results, considered toresults. Further theoretical work, and further experiments, are
gether, suggest rather strongly that the principal physicaheeded in order to clarify and test the connection between
idea explored in our various models—trapped electric chargghe ideas presented here and the “seahorse” experiments.
on a growing aggregate, leading to strongly enhanced growthiowever, using physical ideas motivated by the growth ex-
in regions of Strong electric field—can indeed lead to all Ofperimentsy we have found a new class of “electrostatic
these features. HOWeVer, the final demonstration of this regrowth” mode's that Spontaneously break 2D inversion Sym_
mains a challenge to future work in theory and modeling. metry during growth; and we remain convinced that such
In summary, we have proposed a mechanism for spontaspontaneous symmetry breaking occurs in the “seahorse”

neous chiral symmetry breaking during 2D aggregation. Thigxperiments, and so demands a theoretical model which does
mechanism does not rely on the presence of microscopige same.

chirality; instead, it results from the existence of a long-

ranged electrostatic interaction in the system, due to a
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