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Chiral patterns arising from electrostatic growth models
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Recently, unusual and strikingly beautiful seahorselike growth patterns have been observed under conditions
of quasi-two-dimensional growth. TheseS-shaped patterns strongly break two-dimensional inversion symme-
try; however, such broken symmetry occurs only at the level of overall morphology, as the clusters are formed
from achiral molecules with an achiral unit cell. Here we describe a mechanism that gives rise to chiral growth
morphologies without invoking microscopic chirality. This mechanism involves trapped electrostatic charge on
the growing cluster, and the enhancement of growth in regions of large electric field. We illustrate the
mechanism with a tree growth model, with a continuum model for the motion of the one-dimensional bound-
ary, and with microscopic Monte Carlo simulations. Our most dramatic results are found using the continuum
model, which strongly exhibits spontaneous chiral symmetry breaking, and in particular finnedS shapes like
those seen in the experiments.@S1063-651X~98!03010-4#

PACS number~s!: 61.43.Hv, 68.70.1w, 47.54.1r
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I. INTRODUCTION

Growth phenomena are known for the complexity a
beauty of the patterns they can lead to@1#. Most of this
complexity results from different kinds of instabilities ass
ciated with growth, such as the Mullins-Sekerka instabil
of growth fronts@2#, or fingering instability@3–5#. The pres-
ence of instabilities implies that a tiny microscopic noise c
result in macroscopic changes of shape, and hence lead
variety of shapes.~For instance, the formation of snowflake
a growth phenomenon familiar to everyone, produces h
dreds of different shapes@6#.! However, despite the variet
of shapes, the vast majority of growth patterns preserve
right symmetry; in other words, essentially all of the know
growth patterns areachiral. One well-known and historic
exception is the appearance of hemihedral faces on crys
yielding facetted forms which are not invariant under inv
sion @7#. In the mid-19th century, such faces were identifi
in molecular crystals of sodium ammonium tartrate by P
teur, and the broken chiral symmetry was ascribed by him
the microscopic chirality of the constituent molecules.

In this work we concentrate on two-dimensional~or
quasi-two-dimensional! growth forms. For two-dimensiona
forms the relevant inversion operator isx→2x or y→2y,
but not both; we will call such an operation ‘‘2D inversion,
and forms distinguishable from their 2D inverse ‘‘2D ch
ral.’’ ~Also, since we concentrate entirely on 2D hencefor
we will sometimes shorten these terms by omitting the le
ing ‘‘2D’’ qualifier. ! 2D chiral growth forms are not com
mon @8#. In those rare cases where chiral growth patterns
appear@9,10#, the inversion symmetry is already broken
the microscopic level. An example is the formation of spi
crystals@9# during the compression of a phospholipid mon
layer on a water-air interface. In this case the individu
phospholipid molecules possess a 3D chirality. Each m
ecule also has a preferential orientation~hydrophilic head
down! with respect to the water-air interface. This consist
PRE 581063-651X/98/58~5!/6015~12!/$15.00
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orientation then gives a monolayer withtwo-dimensionalin-
version symmetry already broken@11# at the microscopic
level—assuming only that the molecules themselves hav
predominance of a single enantiomer. And in fact, for sp
crystals to appear, one needs to have a monolayer consi
predominantly of a single enantiomer. The handedness o
crystals depends directly on the handedness of the domi
enantiomer, and no chirality appears for racemic monolay
@9#. While there are several competing explanations of h
the microscopic chirality leads to the macroscopic chira
@12,13#, it is nevertheless clear that the latter occurs o
because of the former. Similarly, in another chiral grow
example—the formation of chiral bacterial colonies@10#—
the individual particles ~bacteria! also have a three
dimensional chirality~of a single ‘‘sign’’!, which then mani-
fests itself as a 2D chirality when coupled with a 2
substrate. The bacterial aggregates are observed to be~2D!
chiral, and always with the same handedness@10#. Thus, in
each of these cases, it is clear that the macroscopic 2D ch
ity of the aggregates results from a microscopic 3D chira
of the elementary building blocks.

Recently, a novel and very beautiful type of growth pa
tern has been reported@14,15#. A typical pattern strikingly
resembles a seahorse~in the form of anS shape, with ‘‘fins’’
on the outer curved edges!, and so has a strongly broken 2
inversion symmetry. The patterns were discovered dur
growth studies of fullerene-tetracyanoquinodimetha
(C60-TCNQ! thin films. Subsequently, very similar pattern
were obtained using TCNQ only@16#. The broken symmetry
is one of the most striking aspects of the patterns, as we
one of the principal mysteries connected with them. T
mystery arises because—in contrast to the two cases m
tioned above—in these experiments there isno microscopic
symmetry breaking: TCNQ molecules are themselves inv
sion symmetric@17#. Furthermore, even though the ‘‘sea
horse’’ aggregates are polycrystalline@14#, one can probably
rule out symmetry breaking at the level of the unit cell, sin
6015 © 1998 The American Physical Society
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TCNQ crystals are also achiral@17,18#.
It is, however, important to note that both left- and righ

handed patterns appear in approximately equal numbers@16#.
Thus, on average, the experiment does not break inver
symmetry; instead the symmetry is brokenspontaneously,
for each island, during the growth. That is, the ‘‘seahors
growth experiments represent an almost unique case of s
taneous 2D chiral symmetry breaking during quasi-tw
dimensional growth.

We say ‘‘almost’’ unique because we are aware of o
one other growth phenomenon exhibiting such spontane
symmetry breaking, namely, phyllotaxis: the pattern
leaves, buds, scales, etc., in growing plants@19#. As demon-
strated by Douady and Couder@20#, this phenomenon can b
understood cleanly in two dimensions; and, furthermore,
resulting spiral growth patterns are clearly chiral, and
symmetry breaking is clearly spontaneous@19,20#. Outside
of this one example from botany, however, we know of
example of two-dimensional growth—experimental
theoretical—in which the resulting growth patterns sponta
ously break 2D inversion symmetry.

In this work we construct a growth model that does yie
such spontaneous symmetry breaking. More precisely,
consider a set of models, all embodying the same id
These ideas involve a novel form of long-ranged bran
competition and growth, arising from electrostatic effec
We have found that such a mechanism can lead to gro
forms that spontaneously break two-dimensional invers
symmetry.

The growth models that we will consider share seve
important properties. These properties are simple, and ca
formulated independently of the nature of the underly
physical processes. The physical picture that we cons
involves the following elements:~i! branching, that is, every
growing branch should eventually give rise to new branch
~ii ! strong branch competition—in fact, the competition h
to be so strong, that only 2 main branches ‘‘survive’’;~iii !
long-range branch repulsion: the two branches need
‘‘feel’’ one another and curve away from each other.

Branching is a very common property in growth pheno
ena@1#. Branch competition is also very common. It is us
ally caused by screening—that is, by the competition
tween growing branches for incoming particles. B
competition due to screening alone is not strong enoug
lead to two-armed shapes. For instance, the diffusion-lim
aggregation~DLA ! model leads to clusters having 4 or mo
branches@21–25#. Competition for incoming particles ma
also cause some branch repulsion. But this effect is o
ously very short ranged~a branch ‘‘feels’’ only its neigh-
bors!. Thus in order to achieve~i!–~iii !, one needs to intro-
duce a long-ranged interaction into the system. As will
discussed in Sec. III A, electrostatic forces may play an
portant role in the formation of the seahorse patterns. He
in our models, the long-range interaction between branc
is also of electrostatic origin.

We will start with a very simple deterministic ‘‘tree’
growth model that has properties~i!–~iii ! by construction,
and show that this model prefers chiral rather than symme
shapes. We will then consider a more realistic quasiequ
rium continuum model, in which properties~ii !–~iii ! arise
naturally due to electrostatic interactions. This model yie
on
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two-armed, finned,S-shaped forms for a range of growt
parameters, for essentially the same physical reasons as
the tree model. We also report some preliminary studies
volving the same physical ideas but using a microsco
Monte Carlo approach. These modeling efforts are inspi
by the puzzling and remarkable experimental patterns;
they yield qualitatively similar growth forms. It is also en
couraging that further growth experiments involving a sta
in-plane electric field~which we discuss briefly below, an
in detail in another paper@16#! have provided support for ou
ideas.

II. CHARGED TREES

In this section we demonstrate, using a simple and hig
schematic model, how long-ranged branch repulsion
competition may cause chiral symmetry breaking. We w
formulate a simple growth model where such branch rep
sion and competition are present by construction, and sh
that chiralS shapes are preferred energetically over symm
ric shapes.

A charged tree model is constructed as follows~Fig. 1!. A
tree starts as a single charged rod. The ends of this rod
considered to be ‘‘alive.’’ Then each alive branch emits tw
branches: one branch of lengthl 0 and the other of lengthl 1 .
Both new branches grow at a predefined angleu. All three
quantities—l 0 , l 1 , and u—are the same for opposite end
and do not vary during the growth. Whenl 0Þ l 1 , there are 4
possible combinations of growth on every step; among the
the model chooses the tree with the lowest electrostatic
ergy. Then the longer of the newly added branches beco
new ‘‘alive’’ branches, the shorter ones ‘‘die,’’ and the pr
cess is repeated again. If two~or more! configurations have
the same energy then the selection is done randomly.
first two steps of growth are shown in Fig. 1.

To complete this model we need to specify how we w
compute the electrostatic energy, as the energy of a
charged rod diverges. The most obvious way to deal w
this problem is to assign some small~but finite! width w to
the branches, with this width satisfyingw! l 0 ,l 1 . This al-
lows us to work with 2D, rather than 1D, charge density.
compute the electrostatic energy of the tree, we further br
the branches into smaller~linear! pieces. Thei th piece has
the lengthl i , and the linear charge densityl i , which is in an
obvious way related to 2D charge densitys i5l i /w.

We will consider two possible charge distributions:~1! a
conducting charge distributionUi5const, whereUi is the
potential at the center of thei th piece;~2! a uniform charge

FIG. 1. The first two steps of a charged tree’s growth. At eve
step, the tree selects a configuration with the lowest electros
energy. For the first step one of the rejected configurations is sh
above the transition arrow.
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distributions i5const. In both cases the total charge of t
system will be normalized by the requirement that the av
age linear charge density be equal to unity, that is,

l̄5(
i

l i l i /L51, ~2.1!

whereL5( i l i is the total length of the structure.
To find the charge densities for each piece we constru

set of linear algebraic equations

(
j 50

N21

Ui j l j51, ~2.2!

wherei 50, . . . ,N21, andUi j is the electrostatic potentia
which would be induced at the center of thei th piece by the
j th piece if the latter had aunit charge density. Clearly the
solution $l i% of Eq. ~2.2! meets the requirementUi5const
~the constant was set to 1!; this solution can then be easil
rescaled to meet the normalization condition~2.1!.

Using elementary electrostatics, one can show that
constantsUi j are given by

Uii 52 ln~5.44w/ l i ! ~2.3!

and for iÞ j

Ui j 5 ln
A~ l j /22xi !

21yi
21~ l j /22xi !

A~ l j /21xi !
21yi

22~ l j /21xi !
, ~2.4!

wherel j is the length ofj th piece,xi ,yi are the coordinates
of the center of thei th piece~the origin is assumed to be a
the center of thej th piece, and thex axis directed along the
j th piece!.

The growth of such trees was studied numerically, and
trees grown according to these rules demonstrate s
chirality. One of the typicalS-like shapes is shown in Fig. 2

Why does the tree prefer to break the left-right symmet
To answer this question, we note that, by introducing

FIG. 2. The growth of a conducting tree.l 150.7, l 050.5 ~ar-
bitrary length units!; u512°. In this case, growth according to a
energy-minimization rule leads to anS shape.
r-

a

e

ll
e

?
e

repulsive electrostatic interaction, we effectively made
tree keep its branches as far away from each other as
sible. This observation alone accounts for the fact that
tree ‘‘chose’’ theS shape on the first split. However, durin
subsequent splits the result is determined by the interac
betweenall branches, and the outcome depends crucially
how the charge is distributed over the tree: the more cha
is concentrated on the small ‘‘dead’’ branches, the stron
the symmetry breaking~i.e., the higher is the achievable cu
vature of the main arms!. We can illustrate this point by
considering the case of a uniform charge distributionl i
5const. In this case the potential energy of a tree is given

Uu5
1

2(i , j Ui j l jl i l i5
l2

2 (
i , j

Ui j l i . ~2.5!

We have grown a number of trees using the above rules,
with the assumption of a uniform charge distribution. T
resulting trees have a much more weakly broken symme
which comes primarily from the symmetry breaking at t
first branching; and they are notS shaped.

This result is consistent with the idea that a higher cha
density on the external ‘‘dead’’ branches~which results, for
instance, from the conducting charge distribution! enhances
the overall chirality of the cluster. We will return to th
question of how the charge redistribution influences wh
branches survive or die in the next section.

We also note that one can construct a nondetermini
charged tree growth model, where the growth rates the
selves are determined by the electrostatic interaction betw
branches. This nondeterministic growth model also leads
spontaneous chiral symmetry breaking@26#.

III. THE CONTINUUM MODEL

A. Construction of the model

In this section we will consider a more realistic grow
model, in which strong branch competition and survival
only two main arms occur naturally~for some range of pa-
rameters!. That is, for the model we now describe, properti
~ii !–~iii ! ~strong branch competition and repulsion! arise as a
result of thedynamicsof growth. In common with the tree
models described above, a crucial ingredient is the prese
of a long-ranged electrostatic interaction.

First we will consider in more detail what actually ha
pens in the ‘‘seahorse’’ experiments@14,15#. In these experi-
ments layers of TCNQ are deposited using the ionized c
ter beam~ICB! deposition@27,28# method. With this method
the TCNQ molecules are ionized and then accelerated
wards the substrate, where they arrive with high kinetic
ergy ~and thus high mobility! and therefore can diffuse alon
the substrate and form growing clusters. A small fractiona
of the diffusing particles~estimated@16# to be typically
;10%) are charged~all of the same sign!. Thus the growing
islands will also carry some~time-dependent! charge. The
magnitude and time dependence of this charge are
known; they depend on many complicating factors, includ
the repulsion of the charged, diffusing particles by the cha
on the island, leakage to the substrate, both from the dif
ing charged walkers and from the charged aggregate, and
‘‘rain’’ of charged particles directly on the growing island
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We will treat this time-dependent chargeQ(t) in an ex-
tremely simple way below; our motivation is to explore t
kinds of effects that electrostatic charge may have on gro
processes.

The field of the island, in contrast with the field of walk
ers, is not random, and therefore will play the dominant r
in how the particles~walkers! diffuse. Hence in our work we
neglect the random field of the walkers. We assume
neutral walkers have a nonzero polarizability; hence the
fusive motion of both charged and neutral walkers is affec
by the electrostatic field of the aggregates. To consider
simplest case, we will neglect any possible cluster-clus
interactions and consider only the growth of an isolated
land.

An obvious approach to this problem would be a Mon
Carlo ~MC! simulation. However, a simple estimate of th
number of particles in seahorse clusters in the experim
gives 1062107 particles. A direct microscopic Monte Carl
simulation for a problem of this size is very hard, if n
impossible. We have performed some limited MC stud
~involving much smaller particle numbers, i.e.,N;103),
which we will describe briefly in Sec. IV. Here we will con
sider an alternative approach, in which, instead of tracing
motion of individual particles, we will compute local growt
rates for the cluster boundary, which we treat as a continu
1D curve. We will obtain equations for the motion of this 1
curve, and study the kinds of growth that result.

First, let us consider a growing island surrounded by d
fusing walkers. If a walker hits the island, then with som
probability ps ~‘‘sticking’’ probability ! it ~the walker! be-
comes a part of the island. Then the local growth rate is

GW ~x,y,t !5
dhW ~x,y!

dt
5n̂~x,y!dm

2 d2Nhits~x,y!

dt dl
ps ,

~3.1!

where dhW (x,y) is the displacement of the given bounda
point (x,y) during the timedt, n̂(x,y) is the unit vector
normal to the boundary,dm is a typical intermolecular dis
tance in the growing cluster~thus,dm

2 is the area occupied b
a single molecule!, and d2Nhits(x,y)/(dt dl) is the number
of hits per unit boundary length per unit time. We then ta

d2Nhits~x,y!

dt dl
5ahitsN~x,y!vT , ~3.2!

where N(x,y) is the walker concentration near the poi
(x,y) on the boundary,vT is an average thermal velocity o
the walkers, andahits is a numerical factor of order of unity
Thus, we can rewrite the equation for local growth rates

GW ~x,y,t !5
dhW ~x,y!

dt
5n̂~x,y!GTpsN~x,y!, ~3.3!

whereGT5ahitsvTdm
2 is a constant that depends only on t

temperature.
Here we will assume that the growth is slow enough to

considered as a quasiequilibrium process~which is the case
when ps!1). Our motivations for this assumption are tw
fold: first, it is physically motivated, in that the stickin
probability may indeed by very small, due to the high kine
th
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energy of the walkers in an ICB experiment; and second
makes the problem tractable, giving a simple form f
N(x,y) that enables us to concentrate on the motion of
boundary. Given this assumption, then, the concentration
walkers is given by a quasiequilibrium Boltzmann distrib
tion: N(x,y,t)5N(0)exp@2U(x,y,t)/kT# whereU(x,y) is the
potential energy of a walker at the point (x,y), N(0) is the
concentration far away from the cluster, andk is Boltz-
mann’s constant.

In our case there are two different kinds of particl
present in the system: charged and neutral walkers, each
having a different concentration and a different potential
ergy function. The overall growth rate is given by

dh~x,y,t !/dt5dhn /dt1dhc /dt ~3.4!

where the subscriptn denotes neutral walkers, and the su
script c charged walkers. The walker concentrations a
given by

Nb~x,y,t !5Nb
~0!exp@2Ub~x,y,t !/kT# ~3.5!

with b5n or c and ~as discussed above! Nc
(0)!Nn

(0) . The
potential energyU(x,y) is equal to 2xE2/2 for neutral
walkers ~of polarizability x) in a field E5uEW (x,y,t)u, and
V(x,y,t)e for charged walkers.

Now we assume that the cluster is conducting. As w
the quasiequilibrium assumption, our reasons are both c
putational and physical: the conducting cluster is rat
straightforward to treat numerically~and even analytically in
some special cases!; but also, from our charged-tree studie
we expect that a conducting cluster will enhance the type
branch competition that we wish to study here. For a c
ducting cluster,Uc ~and hencedhc /dt) are each independen
of position on the island. The applicability of this assumpti
to the seahorse experiments will be discussed below.

The model we have constructed thus far requires the c
putation of the electric field due to the charge on a tw
dimensional growing cluster, which is in general of an
regular shape. This electric field is determined by the cha
distribution s(x,y,t) on the island. However,EW (x,y) di-
verges near the edge of any 2D charge distribution; hen
instead of using the field at the edge, we will use the field
a small~molecular! distance from the edge. That is, inste
of EW (x,y,t)5EW (rW,t) we will use EW @rW1d•n̂(x,y),t#, where
d is the ‘‘sticking distance’’—the distance at which a diffu
ing particle sticks to the cluster; we will assumed;dm . The
electric field is determined by the shape of the island,
within an overall scale factor given byQ, the net charge on
the island.

We can now introduce a simpler charge nonconserv
model. The majority of particles are neutral; furthermore,
charged walkers tend to be repelled from the charged clus
while the neutral, polarizable walkers are drawn to it. Hen
one can expect that most of the growth will result from t
aggregation of neutral particles. Therefore, we neglect
term due to the charged particles in Eq.~3.4!. The charge
effects are taken into account simply by rescalingQ(t). As
discussed above, the likely behavior ofQ(t) is unknown,
and dependent upon many competing effects. Here we
use the simplest possible rescaling rule: we will assume
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Q(t)5A(t)s̄, whereA(t) the overall area of the cluster an
the average charge densitys̄ is assumed to be constant.

We now have a sufficient set of ingredients for a compl
growth model. That is, a given initial shape determines
charge distribution and hence the electric field. The la
then allows a growth increment in timedt to be computed,
yielding a new shape. With the new shape one then comp
a new charge distribution and field, and so on.

B. Analysis and simulation

Now we will show that, with the model as stated, a gro
ing island will eventually transform from a compact to a
elongated shape. Consider an island of elliptical shape,
principal axesa, b. If we compute the new boundary, usin
Eq. ~3.4!, the new shape will not be exactly elliptical; how
ever, the ellipse’s field may still be used as an approxim
tion. It is then obvious that this new ellipse will have grea
eccentricity than the original one if

a1G~a,0!dt

b1G~0,b!dt
.

a

b
, ~3.6!

which ~considering only growth from neutral walkers! is
equivalent to

G~a,0!

G~0,b!
5expH x

2
@E2~0!2E2~p/2!#/kTJ .a/b. ~3.7!

The electrostatic fieldE(f) at distanced from the point
(a cosf,bsinf) is given by

E2~f!5
Q2

2dab
~b2cos2f1a2sin2f!21/2. ~3.8!

After introducing the average charge densitys̄5Q/A, where
A5pab is the total area of the cluster, Eq.~3.7! becomes

expFxs̄2p2

2kTd
~a2b!G.

a

b
. ~3.9!

It is obvious from this equation that, if at some time du
ing the growth the relationship Eq.~3.9! becomes valid, it
will remain valid afterwards. Initially, the shape is compa
~circular!, i.e., a5b5R. However, due to the stochastic a
pect of the growth there are always small variations in
radius. One can expect that the magnitude of these variat
is at least;d, that is, ua2bu;d. The transition from the
compact to elongated shape occurs when the compact s
becomes unstable with respect to such variations. This h
pens whenR reaches some critical valueR0 , determined by

11d/R05expS xs̄2p2

2kT
D , ~3.10!

or

R0'2dkT/xs̄2p2. ~3.11!

Now, estimatings̄;ae/dm
2 , x;2310224 cm3, dm'd

;1027 cm, a510%, andT'300 K, we get the estimate
e
e
r

es

-

th

-
r

t

e
ns

pe
p-

R0;0.2 mm. Although this estimate is very rough, it is en
couraging to see thatR0 is smaller~by roughly an order of
magnitude! than the size of seahorses observed in the exp
ments@14,15#.

Thus we find an instability of a compact, circular clust
to an elliptical form, when the compact cluster exceed
critical size. We have studied the growth of ellipses nume
cally, and verified that the elongation decays forR,R0 ;
while for R.R0 the elongation persists and grows well b
yond the linearized form, and in fact is amplified~and
‘‘pinched’’ ! by the resulting growth, to give two arms. W
have also numerically tested instabilities to four arms. H
we find, for the parameters that we have explored, that
two-arm instability is dominant over four-arm instabilities

It is clear that, for most cases of interest, neither
charge density nor the electric field can be computed ana
cally. Hence we need to implement our growth model n
merically. This can be done as follows. The current bound
of the cluster is represented as a set of vertices$rWv :v
50, . . . ,Nb21%, connected by line segments. For each v
tex we compute the potential energy of a walker near t
point U(rWv); then a unit normal vectorn̂v , and the displace-
ment vectorDW v5n̂vG(rWv)D t are computed~where D t is a
time-scaling constant!. After all displacements are compute
all vertices are moved to their new positions. The only
maining problem is to compute the field distribution near t
boundary.

One can try to deal with this problem by solving straigh
forwardly Laplace’s equation for the electrostatic potenti
However, despite the fact that our problem is two dime
sional, Laplace’s equation for the electrostatic potentia
still three dimensional. Hence, to find the local electrosta
field, one would need to solve this 3D problem for the fu
space. To take advantage of the lower dimension of the p
lem, we will use a surface charge method@29–32#, which we
will outline below.

Given the clusterC, we first compute the 2D charge den
sity s(x,y), and then find the electrostatic field. To fin
s(x,y), we introduce a grid$DW i ,i 51, . . . ,Ng ;DW iPC%,
forming a square lattice inside the cluster. Each square
this lattice is assigned a charge densitys i ~we will refer to
these squares as elements!. Now we replace the continuou
equation for the electrostatic potentialV(x,y)5const for all
(x,y)PC by the discrete equationV(DW i)5const, which
gives rise to the following set of linear algebraic equation

(
j 50

Ng21

Ui j s j51, ~3.12!

where i 50, . . . ,Ng21, and the scaling constant on th
right-hand side~here set to 1! can be chosen arbitrarily~that
is, after the system is solved, we can rescale all thes i). Ui j
is the electrostatic potential which would be induced at
point DW i by the square elementj , if the latter had aunit
charge density. Therefore, one can approximateUi j as fol-
lows:

Ui j 5
Aj

r i j
for iÞ j , ~3.13!
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whereAj is the area of thej th element, andr i j 5uDW j2DW i u.
For most purposes the accuracy of this point-charge equa
is sufficient, but one can also use a more accurate expres
for Ui j that takes into account a quadrupole correction

Ui j 5
Aj

r i j
S 11

Aj

24r i j
2 D . ~3.14!

The expression for the self-induced potential is

Uii 53.525d, ~3.15!

whered is the element size~i.e., the grid step!.
Equation~3.12! can be solved numerically and then th

electric field can be computed. However, at this point
face a difficulty. As we have seen earlier, the field intens
E diverges near the edge of the cluster. In addition,
charge density itself diverges near the cluster’s bound
Thus we are trying to find small variations in a divergin
quantity, which itself depends on another diverging quant
We can alleviate this problem by introducing line charg
along the boundary. That is, in addition to charged squ
elements, we will assume that the boundary segments
also charged. This modification can be easily incorpora
into Eq. ~3.12!; one needs only to distinguish between t
self-potentialUii for square elements, which is given by E
~3.15!, and the self-potentialUii for line elements at the clus
ter’s boundary, given by

Uii 52w ln~5.44w/ l i !, ~3.16!

wherew is the segment’s width~i.e., border width! and l i is
the length of the segment. The accuracy can be further
proved by using the exact field of a uniformly charged r
rather than the point charge field given by Eq.~3.13!.

As an even further simplification of the problem, we m
use the linear~boundary! elementsonly. The basis for ne-
glecting the interior elements~which are exactly zero in 3D!
is the fact that the charge density in 2D is the largest near
boundary, so that charges located close to the boundary
the main contribution to the electric field. This simplificatio
not only reduces the number of elements to consider~and
thus speeds the computation!, but also makes it easy to com
pute the electric field intensity: to compute a field at distan
d from elementi , one can just use

EW i52n̂is iw/d. ~3.17!

The Boltzmann factor for a neutral particle in this field
then given by exp@xEi

2/(kT)#5exp(gsi8
2), where g

54xw2s̄2/(d2kT) is the dimensionless interaction consta
and s i8 is the dimensionless charge density, determined
Eq. ~3.12! and by the rescaling condition((s i8l i)/( l i51.

We find this simplification to be very important, becaus
when the charge density is modeled by a square grid~even if
the grid is very fine!, the nonuniformity in the charge densit
~arising from the finite grid step! causes noticeable~artifac-
tual! fluctuations in electric field, which are thenamplified
by the growth of the island. In contrast~as will be seen
below!, if we locate all the charge on the boundary eleme
then the discretization does not lead to such artifacts.
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course, this simplification results in a less realistic field, b
we believe that the main physical features of the system—
charge redistribution within the cluster, and the resulti
branch repulsion and competition—are preserved.

We add one further ingredient to our model, namely,
property~i!: branching. The branching instability in growin
forms is well known@33–35#; it arises in diffusive problems
as a result of competition between surface~incoming!
diffusion—which tends to favor new branches—and ed
diffusion ~along the boundary!—which tends to keep the
cluster smooth. Such competition may be expressed in te
of a length scaleL0 ; this is essentially the cluster size, o
branch length, at which edge diffusion can no longer ma
tain the smoothness of the growing form, and new branc
form. Our continuum model does not explicitly represent t
underlying diffusive processes. Hence we include a bran
ing instability in a simple way as follows. When a branc
reaches a sizeL0 ~or after a certain number of growt
steps—which is approximately the same criterion, for t
fastest-growing branches! we force it to split exactly at the
point of the fastest growth~as determined by the charge di
tribution! into 2 branches. This branch splitting is just th
simplest implementation of the fingering/tip splitting inst
bility, which is present in many growth phenomena@3#. This
instability arises near the tips of fast advancing branches;
the faster the growth, the more likely the split to occur@3#.
For most diffusive problems one may expect branches
form also away from the fastest-growing tips. We have e
plored this possibility numerically, and find in fact that, if w
introduce such branches away from the tips, they do
grow—due to the severe competition present in our mod
Hence, in the following, we only describe cases where no
is introduced near the tips of the fastest-growing branche

Obviously, the model described thus far lacks any sou
of noise ~apart from some tiny numerical noise, which
always inevitably present!. This means~among other things!
that all symmetries present in the initial shape of the clus
will be preserved during the growth. To explore the possib
ity of chiral symmetry breaking, then, we need to add so
~very small! noise into the system—noise that breaks 2
inversion symmetry.

Based on the considerations above, our typical star
condition for numerical studies is an ellipse, with some ve
small defects added to represent noise. As mentioned ab
the cases of interest, in which the defects induce furt
branching, occur when the noise is added near the tips—
near the long axis of the ellipse. As one test of the sensitiv
of the model tochiral noise, we have used as a starting for
an ellipse with two tiny defects, which are small dents plac
near~but not at! the tips of the ellipse, along the long axi
The right dent is placed slightly above thex axis, and the left
dent slightly below. Thus these defects break 2D invers
symmetry. Figure 3 shows the results after several gen
tions of branching. We note that the original defects are
tiny that they are almost invisible in Fig. 3; however, th
original tiny chirality has been increased hugely by the
sulting growth. We also see that Fig. 3 bears an obvi
resemblance to the experimentally observed ‘‘seahorses.
fact, it has essentially the same geometric properties a
typical experimental seahorse:~1! only two main arms;~2!
these main arms are curved;~3! the curvature is correlated



tu
rti
ta

im
he

ef
ffi
v
a
s

m
a

ur
th

an
r

iti

irs
lec

so
th
will

ps
ay
n
will

he
es
g
ugh
d so
o-
p
rm

lus-
ain

wo
t
he
r-

as-
n

the
all
are
ing

h
e
m
d

w
ar

3,

the

PRE 58 6021CHIRAL PATTERNS ARISING FROM ELECTROSTATIC . . .
~that is, the two branches curve in opposite directions!; ~4!
the outer edge of each main arm is covered by ‘‘fins’’~small
dead branches!.

It is important to test that such dramatic effects are ac
ally implied by the dynamics of the model, rather than a
factual ~i.e., resulting from some defects in the implemen
tion of the model!. In fact, it is possible to ‘‘discover’’ a
chiral symmetry breaking in the present model arising s
ply from the fact that a certain ordering of points along t
boundary~clockwise or counterclockwise! is present in the
numerical algorithm. Such an ordering can break the l
right symmetry of the numerical growth results unless su
cient care is exercised. We have discovered and remo
such artifacts in our own algorithm. A good test is then
numerical simulation in which the starting shape is an ellip
with two defects thatdo not break the symmetry~i.e., the
defects are located precisely at the tips of the ellipse!. The
result of such a test is presented in Fig. 4: the original sy
metry is retained during subsequent growth. Hence we
confident that our numerical studies are free of anyartifac-
tual chiral symmetry breaking.

Now let us consider in more detail how the observed c
vature arises. Figure 5 gives a more detailed picture of
growth and branching processes at one end of the isl
After the first split@Fig. 5~a!#, the new branches compete fo
further growth~as determined by the electric field!, and one
of the new branches ‘‘dies’’„i.e., practically stops growing
@Fig. 5~b!#…. The winning branch eventually reaches the cr
cal length and then splits again@Fig. 5~c!#. Let us consider
what happens when this branch splits in some detail. F
we note that the new branches ‘‘feel’’ one another. The e

FIG. 3. Sixty time steps in the growth of a charged island. T
starting condition is an ellipse with two tiny defects, each plac
just counterclockwise of the ellipse’s symmetry axis. The tiny sy
metry breaking present in these defects is dramatically enhance
the subsequent growth.

FIG. 4. Growth of an ellipse with two tinysymmetricallylocated
defects. Such a shape preserves its symmetry during the gro
Hence the symmetry breaking seen in the other figures is not
factual.
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trostatic repulsion will cause the charges to redistribute,
that the points of fastest growth will no longer coincide wi
tips of the new branches. Instead, the fastest growth
occur at points of maximal local charge density~hence maxi-
mal uEW u2), which are farther away from each other than ti
of the branches. This will force the branches to curve aw
from one another. If the split is originally symmetric, the
the result of the competition between the new branches
be determined by the influence of all the other~already dead!
branches. In particular, the main body~being closer to the
lower branch! favors the upper new branch~branch 3!, while
the previous branch~branch 2! favors the lower new branch
~branch 4!. Branch 2 is smaller than the main body, but t
main body is further away. Hence, if the parameter valu
are right ~in particular, if the distance between splittin
points is small enough, and dead branches are large eno!,
then the nearby dead branch has a dominant influence, an
branch 4 will win the competition. Then, due to the exp
nential difference in the growth rate, branch 2 will sto
growing. If this sequence is then repeated, the main a
curves further to the right at each branching.

A similar process happens on the opposite end of the c
ter. Hence we see how the present model leads to two m
arms, each of which may be rather strongly curved. AnS
shape~rather than aC or a ‘3’ shape! results if the direction
of curvature is the same for both main arms; that is, the t
arms must show acorrelation in curvature. This implies tha
one end of the growing body is significantly affected by t
form of the distant end. We believe that this point is impo
tant: curvature itself, such as shown in Fig. 5, may be
cribed to relativelylocal effects. However, the correlatio
giving rise to consistentS shapes appears torequire some
form of long-ranged communication between the parts of
growing island. It is interesting to note here that, in a sm
minority of the experimentally observed islands, there
two arms whose curvature is in opposing directions—giv
a 3 form rather than anS @16#.

e
d
-
by

th.
ti-

FIG. 5. Early stages in the growth of the right half of Fig.
viewed in detail.~a!,~b! The broken symmetry in the original~tiny!
defect leads to dominance of the lower branch.~c! The growing
branch 1 splits again.~d! The nearby ‘‘dead’’ branch 2 inhibits
branch 3, so that again the lower branch dominates. In this way
‘‘memory’’ of the handedness~right or left! of the original small
defect is maintained and amplified by the subsequent growth.
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This correlation is not tested by our Fig. 3, since it is bu
into the starting condition. We demonstrate that such a c
relation does occur in the present model in Fig. 6. Here
starting condition is an ellipse with one~right! defect off axis
~to break the symmetry!, but the other one precisely on axi
We see that the growth dynamics not only causes the r
arm of the cluster to curve downwards, but also determi
the outcome of the competition at the other end of the isla
It is clear from the figure that the growth at this end is in
tially symmetric; yet subsequently, the upper arm domina
purely due to influence from the other end of the cluster.
see that ‘‘clockwise’’ growth at one end has sufficient infl
ence to force clockwise growth at the other. Thus we fi
that dominance and curvatureare correlated between the tw
main arms, leading to strong chirality of the overall clust

We have also examined the case where both defects
on the same side of the main axis. Here too we find that
two branches, while initially curving as expected from t
local bias, after some growth ‘‘feel’’ one another and so a
repelled. We believe, however, that this starting condition
less realistic than those in Figs. 3 and 6, because the n
we introduce into our continuum model does not repres
truly microscopic noise, but rather that noise that may
expected to grow beyond the microscopic scale. This is
cause the continuum model itself is not a truly microsco
model. Below~Sec. IV! we will give evidence from our mi-
croscopic Monte Carlo studies that this continuum mo
does indeed capture important features of the large-scale
havior of a microscopic model with noise—in particular, t
two-arm instability, and the repulsion between these t
arms.

It is entirely plausible that a ‘‘nonlocal’’ effect such as th
correlation of curvature shown in Fig. 6 is more fragile th
the more local effects shown in Fig. 5. This is true expe
mentally @16#: as noted above, while the large majority
individual experimental clusters form anS shape, some do
not. Yet it is precisely this kind of long-distance correlatio
that gives rise to the broken inversion symmetry: in the
sence of such correlation, half of the two-armed islan
would have a 3 orC shape—and these shapes are not
chiral.

FIG. 6. Growth from an initial shape in which one defect~on the
right! is off the symmetry axis, but the other~on the left! is on the
symmetry axis. The broken symmetry on the right-hand side
has a large effect on the growth of the left-hand side—in fact
causes the same~clockwise! branch to dominate there, even thoug
the left-side defect is symmetrically placed.
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Finally, we wish to demonstrate in yet another way th
the dramatic symmetry breaking shown in Fig. 3 is a genu
outcome of the growth dynamics of our model: that is, theS
shape is not anecessaryoutcome of the growth model, ye
neither does it require fine tuning of the model paramete
Starting with the same initial form as that leading to Fig.
we have performed simulations for different values of t
two model parameters:L0 ~the branching length!, and the
electrostatic interaction constantg. The results are presente
in Fig. 7.

A number of conclusions may be drawn from Fig. 7. W
see clearly thatbranching is important for obtainingS
shapes: in the bottom row of the figure, branching is ess
tially absent, and the resulting forms amplify the brok
symmetry of the initial condition only rather weakly. W
also see that charge effects are equally important. They
weak in the left-hand column of Fig. 7; and the resulti
forms are uninteresting, regardless of the branching len
Finally, we note that, while both of these effects a
important—in that they must be present in order that ‘‘inte
esting’’ growth forms result—fine tuning of the two mod
parameters isnot needed: we see clear two-armedS shapes
over a central region of the parameter space.

In short, Fig. 7—along with the previous figures—
demonstrates rather clearly that growth dominated by e
trostatic effects1 branchingcan give rise to spontaneousS
shapes that strongly break 2D inversion symmetry, and

ll
it

FIG. 7. Growth forms for different values of the branchin
length L0 ~increasing downwards! and the interaction constantg
~increasing to the right!. There is a region of the figure~roughly, the
center! in which growth givesS forms resembling those seen e
perimentally. However, if the electrostatic effects are too weak~left
side! or branching is too infrequent~bottom! then other forms re-
sult, displaying little or no chiral symmetry breaking.
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these forms arenot simply modeling artifacts arising eithe
from fine tuning or from being built into the model by han

We thus assert that our model possesses a genuinechiral
growth instability; that is, it can drastically amplify any tin
perturbation that breaks the left-right symmetry. Such ‘‘dr
tic amplification’’ is of course what is meant by the ter
‘‘spontaneous symmetry breaking’’—which is also an app
priate description. Hence the kind of pattern-forming beh
ior studied here falls into the same, quite rare class of beh
ior as that seen in phyllotaxis@19,20#.

IV. MONTE CARLO STUDIES

We have performed a number of MC studies of aggre
tion under conditions where the aggregate is charged,
there are both charged and neutral walkers. The most o
ous obstacle to overcome is the size of the clusters; as m
tioned earlier, there are 1062107 particles in a typical ex-
perimental cluster. Thus, in order to perform a succes
MC simulation of these experiments, one must find a reg
where the desired behavior~formation ofS-like clusters! is
achieved with smaller numbers of particles.

We have explored a number of MC models, involvin
various combinations among the following choices: cha
conserving or not~as above!; following each walker indi-
vidually, or making~again! a quasiequilibrium assumptio
for the spatial distribution of walkers; and treating the clus
as insulating or conducting. Our most encouraging res
were obtained using the latter choice in each of the ab
three cases: that is, modeling only the neutral walke
treated as a quasiequilibrium gas bonding to a conduc
cluster. The resulting model is very like our continuu
model in many ways—with the important difference th
branching is now a part of the model dynamics, rather th
being enforced as a premise of the model.

With the above assumptions, the growth rule is as f
lows. We perform the growth simulation with the underlyin
2D space discretized as a triangular lattice. Given a shap
the cluster~i.e., a set of occupied sites—our starting clus
is typically a single site!, we first find all nonoccupied lattice
sites adjacent to the cluster. Then, for all sites simu
neously, we compute the non-normalized probability o
new particle joining the cluster at this site according to

Ps5A exp@~xEs
2/21KsEb!/kT#, ~4.1!

where subscripts numbers sites along the cluster bounda
Es is the electric field strength at sites, A is a normalization
constant~effectively, the time scaling constant!, Ks is the
number of sites neighboring sites that are already occupied
and Eb is the bond energy. Thus, again we have a tw
parameter model. The strength of electrostatic effects is
by the dimensionlessx. The competition of surface and edg
diffusion is contained in the bond energyEb : LargeEb tends
to keep the cluster smooth, while smallEb allows small ir-
regularities to grow.

Using this MC model, we were able to reproduce some
the features of the seahorse clusters. Specifically, we fou
clear two-arm instability for a significant area of the tw
dimensional parameter space. We also found some tend
for the arms to curve, with small dead branches on the o
-
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edges of the curves~Fig. 8!. However—recognizing now tha
the particle numberN represents in a sense a third dimensi
to be explored~with our present range ofN&2000)—we did
not find a volume of this three-dimensional space in wh
the curvature appeared consistently. It is, however, inter
ing to note that, where curvature did appear, there was
apparent tendency for the curvature of the two arms to
correlated.

As mentioned above, in tests of our continuum model
found that there was a four-arm instability, which, howev
was weaker than the two-arm instability over a range
growth parameters. One can also see this from Fig. 7:
some parameters, one finds four dominant arms, and for
ers, two. Here we see the same competition in Fig. 8: t
arms have grown to dominance, yet there are two others
have not entirely stopped growing. We have also plotted
a two-dimensional ‘‘map’’ of MC growth patterns, depen
ing on the electrostatic parameterx and the smoothness pa
rameterEb /kT. We find that this ‘‘map’’ is qualitatively like
that shown in Fig. 7: compact shapes for smallx and large
Eb /kT ~roughly equivalent to smallg and largeL0 in the
continuum model!, and two, relatively straight, arms fo
large x and smallEb /kT. There are also some significan
differences between the two maps. One difference is~again!
that we find no region@in (x,Eb) space, atN;2000] of
consistent curvature of the two arms, givingS shapes. An-
other is some tendency for three or six arms to appear; th
almost certainly an artifact of the underlying triangular la
tice.

Clearly these results support some important aspect
the picture gained from our other, less microscopic mod
even as they fail to give ‘‘seahorse’’ forms. The two-ar
instability, with the tendency for the two arms to lie'180°
apart, is clear; also the microscopic parametersx andEb /kT
give qualitatively the same growth behavior as dog andL0
in the continuum model. However, we have not found co
sistentS shapes from the MC models that we have explor
We believe that MC simulations with largerN are needed to
test these ideas and results further. It is clear that the kin

FIG. 8. A 2300-particle cluster grown using a Monte Carlo
gorithm on a triangular lattice. The growth rule is described in
text; growth parameters arex51.0 andEb /kT52.5. Although this
cluster looks promising, we have not obtained such results con
tently. It is probably necessary to use larger particle numbers
obtain such forms consistently.
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repeated branching and death shown in Fig. 5 require
minimal number of microscopic particles in an aggreg
before it can appear. Each dead branch that plays an im
tant role in driving the curvature must be formed of som
minimum number of particles; and there must be seve
generations of dead branches—and of course concom
growth of the entire aggregate—for the curvature to beco
significant. We believe that our current results are below t
threshold inN ~assuming that it exists!. Our current MC
results also show too much dominance from both noise
the underlying lattice. It is clear from Fig. 8 that artifac
from the underlying lattice are not negligible at the sm
scale of the figure. Also, microscopic noise is still large
this scale, compared to the other physical effects influenc
the growth. Both of these effects will become less import
at largerN.

V. GROWTH IN AN EXTERNAL
ELECTROSTATIC FIELD

The results that we have presented above represen
unusual form of symmetry breaking in the modeling
growth phenomena. While these studies were inspired by
same unusual symmetry breaking seen in the ICB exp
ments@14–16#, it is by no means certain that the mechanis
explored here are in fact responsible for the observed gro
patterns. Our ideas have, however, motivated further gro
experiments, to be reported in detail in a separate publica
@16#. Here we will briefly describe the idea of the expe
ments, and the corresponding simulation studies that we h
done, using our continuum model.

ICB growth experiments have been performed as in R
@14# and@15#, with the single change that there is imposed
external electrostatic field in the plane of the films. The m
tivation is to test whether electrostatic effects are indeed
portant for the growth forms; and the results@16# say that
they are. Qualitatively, the in-plane field tends to give th
effects:~a! the curvature of the main arms is reduced by
field, and even eliminated in a sufficiently strong field;~b!
growth appears to be predominantly at one of the two m
arms;~c! there is aweaktendency~which cannot be distin-
guished with certainty from zero! for the straightened clus
ters to grow in alignment with the external field.

It is straightforward to include an external electric field
our continuum simulations, by adding another term to
equations~3.12! for the charge densities. A typical resu
from such a simulation is presented in Fig. 9. The start
condition is the same as for Fig. 3. We see that the clu
has lost most of its curvature. Also there is some competi
between the tendency to curve~which is favored by the start

FIG. 9. Growth in the presence of an external electrostatic fi
oriented horizontally to the right. Starting conditions and grow
rule are otherwise as in Fig. 3.
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ing defects! and the external field~which tends to align the
growth along the field direction!. The result of this competi-
tion is ~roughly! a straight branch, growing at an angle to t
field. These results show a good qualitative agreement w
the experiments:~a! the curvature of the main arms is su
pressed;~b! only one arm grows; and~c! there is some weak
tendency for growth to follow the direction of external fiel
and at the same time, some reason to expect the grow
deviate from the orientation of the external field.

VI. CONCLUSIONS

Despite the obvious resemblance between the experim
tal results and our simulations, many questions need to
answered before one can claim that our model is dire
related to the experiment. First, TCNQ crystals are not c
ducting @36,37#. However they are believed to have a lar
~about 8) dielectric constant@38#. Obviously, the polariza-
tion charge distribution on the surface of a dielectric will
different from the charge distribution on the surface of
conductor; but the larger the dielectric constant, the sma
this difference. Second, our model relies crucially on t
assumption of slow growth~this assumption leads to expo
nential differences in growth rates!. It is not clear how close
this assumption is to what really happens in the experime
Third, there are very large uncertainties regarding the lik
behavior ofQ(t), the charge on an island as a function
time. Finally, there is one feature in the experimental p
terns that can almost certainly not be obtained from our e
trostatic mechanism alone, namely, in the experimental s
horses the curvature is strong enough and prolonged eno
that the main arms commonly bend back to touch the cen
body of the island. We speculate that the addition of crys
line anisotropy effects at grain boundaries can yield this k
of behavior.

One might argue that some other kind of long-ran
force—for example, that coming from elastic effects—mig
produce anS shape. Of course we cannot rule out this po
sibility. However, the physical effects expected from elas
forces are rather different from those explored here, aris
from electrostatic effects. Elastic stresses are not conc
trated at growing tips, but rather at ‘‘valleys’’ of the solid’
boundary. Also, in our picture the electrostatic effects
important beyond the boundary of the aggregate. Ela
forces can also extend through the substrate, beyond
boundary of a growing island, during epitaxial growth on
crystalline substrate@39#; however, such effects seem likel
to be much smaller for an amorphous substrate such as
used in the ICB deposition experiments. Finally, it is n
clear to us how elastic forces could give the broken symm
try seen experimentally, nor the strong sensitivity of t
growth patterns to an external electric field@16#. We do note,
however, that somecombinationof elastic and electrostatic
effects may be needed to give rise to the high degree
‘‘bending back’’ of the main arms~noted above! seen in the
experimental seahorses.

We comment upon our modeling results. It remains to
demonstrated that all of the features reported here~two arms,
branching, consistent correlated ‘‘deaths’’ of branches le
ing to curvature, and correlation between the curvatures
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the two main arms! can be seen to occur together in a sing
model, with none of them being imposed on the model
construction. Our continuum model shows all of these f
tures but the branching itself~which is uncontroversial!; and
our MC studies have shown hints~or more! of all of these
features. We believe that all of our results, considered
gether, suggest rather strongly that the principal phys
idea explored in our various models—trapped electric cha
on a growing aggregate, leading to strongly enhanced gro
in regions of strong electric field—can indeed lead to all
these features. However, the final demonstration of this
mains a challenge to future work in theory and modeling

In summary, we have proposed a mechanism for spo
neous chiral symmetry breaking during 2D aggregation. T
mechanism does not rely on the presence of microsc
chirality; instead, it results from the existence of a lon
ranged electrostatic interaction in the system, due to
trapped charge on the growing aggregate. This interac
leads to a strong competition and repulsion between grow
branches, and—as we have shown here—can give rise
strongly butspontaneouslybroken 2D inversion symmetry
We have explored several different approaches to the si
lation of growth in the presence of such an electrostatic
teraction: tree models, continuum models, and Monte C
simulations. Especially encouraging results were obtai
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using the continuum model; simulated growth often led
clusters that possess the same geometrical properties a
experimentally observed ‘‘seahorses’’@14,15#. The results of
our simulations in the presence of an external electric fi
are also in good qualitative agreement with the experime
results. Further theoretical work, and further experiments,
needed in order to clarify and test the connection betw
the ideas presented here and the ‘‘seahorse’’ experime
However, using physical ideas motivated by the growth
periments, we have found a new class of ‘‘electrosta
growth’’ models that spontaneously break 2D inversion sy
metry during growth; and we remain convinced that su
spontaneous symmetry breaking occurs in the ‘‘seahor
experiments, and so demands a theoretical model which d
the same.
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